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Statement of the Problem. 
Organic π-conjugated polymers are active components in emerging military technologies 

such as compact fluorescent sensors that warn soldiers about chemical or biological threats,1 
lightweight solar-to-electrical energy converters for operation in the field,2 and the matrix of 
artificial muscles.3 These materials have many advantages over their inorganic counterparts, 
including inexpensive feedstocks and the ability to be placed on flexible, large area substrates 
using solution-based processing and deposition methods. Though promising, the widespread 
application of these polymers has not materialized in part due to the limited architectures 
available; homopolymers are the most synthetically accessible yet they often lack one or more of 
the properties necessary for a functional device (e.g., efficient absorption, exciton dissociation, 
and charge conduction for solar cells). As a result, blends of homopolymers are typically used 
for these devices;4 however, the morphology of these blends is not controlled and can depend on 
a number of variables, including monomer identity, polymer molecular weight, vapor pressure of 
deposition solvent, and annealing temperature. Though the influence of blend morphology on the 
efficiency of solar cells has been well documented5 and is an active area of study,6 a method to 
control and stabilize the film morphology is critically needed. Gradient copolymers, which have 
a continuous change in composition from one chain end to the other, have exhibited unique 
properties from both random and block copolymers,7 including phase-compatibilizing abilities in 
homopolymer blends.8 Prior to our work in this area (see below), there were no known examples 
of π-conjugated gradient copolymers because until recently there were few controlled chain-
growth polymerization methods for these materials. In order to identify the unique properties of 
π-conjugated gradient copolymers, we need to synthesize these copolymers and elucidate their 
structure-property relationships. 
 
STIR Proposal Objectives 
Objective 1 (Months 1-3)  

Measure reactivity ratios for two pairs of monomers with the Ni- and Pd-catalysts.  
(If the monomers examined in Objective 1 have reactivity ratios suitable for 
copolymerization, then we will proceed to Objective 2a; otherwise we will pursue Objective 
2b.) 

Objective 2 (Months 4-9)  
 (a) Synthesize gradient π-conjugated copolymers, determine gradient composition and 
measure their optoelectronic properties using a combination of spectroscopic methods.   
(b) Screen monomers with opposing electron densities to determine reactivity ratios.  

 
Summary of the most important results.  

Preliminary work in my group has focused on synthesizing gradient copolymers of 2,5-
bis(hexyloxy)benzene and 9,9-dioctylfluorene using both batch and semi-batch methods as well 
as examining their unique optical and electronic properties. Our results provided (1) several 
novel π-conjugated gradient copolymers,  (2) the first reactivity ratios measured for Ni-catalyzed 
copolymerization of conjugated monomers, and (3) spectroscopic evidence for efficient energy 
transfer in the copolymers in solution and thin films.9 Though successful, we ran into several 
challenges, including a surprisingly large difference in reactivity ratios, which led to copolymers 
with large blocks at the termini and a short, intervening gradient region (tapered block 
copolymers).  
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Copolymer Syntheses. Although monomers 1 and 2 were reported to undergo chain-growth 
homopolymerizations, we needed to empirically optimize the conditions to obtain a chain-growth 
copolymerization: (1) Copious amounts of Ni black and Ni(dppe)2 were observed when the 
copolymerizations were performed at rt. These decomposition products may be due to 
competitive ligand exchange and disproportionation during initiation. These processes remove 
unknown amounts of Ni from the polymerization and lead to uncontrolled conditions. 

Performing the copolymerizations at 0 °C avoided these decomposition pathways.  (2) A linear 
increase in Mn as a function of conversion was observed when Ni(dppe)Cl2 was used as the 
initiator, suggesting a chain-growth mechanism. Although the polydispersity index (PDI) of the 
copolymer was high for a chain-growth process (~1.7), we attributed this result to a relatively 
slow and inefficient initiation. Surprisingly, other commercial Ni initiators reported to give 
chain-growth homopolymerizations, such as Ni(dppp)Cl2, Ni(dppf)Cl2, and Ni(PPh3)2Cl2, did not 
exhibit chain-growth behavior in these copolymerizations. Ongoing work in my group is focused 
on developing new initiators with improved stability and initiation efficiencies. 

A series of batch polymerizations were then carried out wherein the initial molar ratio of 1:2 
was varied (3:1, 1:1, and 1:3), forming gradient copolymers with different final compositions. At 
the beginning of each batch copolymerization, the cumulative mole fraction of 2 incorporated 
into the polymer chain was higher than the initial molar ratio present in the feed, suggesting a 
significantly faster rate of incorporation for monomer 2. Overall, the large difference in 
reactivity limits the types of gradient copolymers that can be synthesized via batch 
copolymerizations. Therefore, copolymers with a more gradual rate of compositional change 
were synthesized using the semi-batch method, wherein the more reactive monomer (2) is added 
to the reaction gradually over time. These studies proved challenging because chain-growth 
behavior was found to depend on the total monomer concentration. A linear increase in Mn was 
observed until the [monomer] reached approximately 0.02 M. This result is consistent with a 
change to a conventional step-growth mechanism at high dilution. To avoid this complication, 
the semi-batch syntheses were performed at higher concentrations and quenched before the total 
[monomer] reached 0.02 M. Overall, the variety of gradient copolymers synthesized was limited 
due to the narrow range of [monomer] that gave chain-growth behavior. These results suggest 
that future studies should focus on different monomers and possibly different catalysts. 

 
Reactivity Ratios. To quantify the reactivity differences, the reactivity ratios were 

determined through a series of experiments wherein the initial concentrations of 1 and 2 were 
varied. The rates of monomer consumption were followed for the first 30% conversion by IR 
spectroscopy. This data was fit with a least-squares regression to the integrated copolymerization 
equation (eq 2), where (f1)0 and f1 are the mole fractions of monomer 1 in the feed initially and at 
time t, respectively. In total, over 40 experiments at 8 different concentrations were 
simultaneously fit to determine the reactivity ratios, which reflect the rate preference for a 
propagating species to add its own type of monomer over the other. Consistent with our 
qualitative observations, monomer 1 gave a reactivity ratio (r1) of 0.33 ± 0.04 while monomer 2 
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gave a reactivity ratio (r2) of 11 ± 1. 
These values indicate that the growing 
polymer chain prefers to add 2 over 1 
regardless of the identity of the 
previously added monomer unit. Since 1 
has an ortho-substituent, we hypothesize 
that steric interactions of 1 with the 
catalyst may be leading to a diminished 
rate relative to 2. The electronic differences between the two monomers may also be a 
contributing factor. Given this limited data set, we plan to further probe this issue using the 
monomers described in Aim 1.  

 
Copolymer Characterization. UV-vis and fluorescence spectroscopy were used to 

characterize the optical properties of these novel gradient copolymers (Figure 1). The gradient 
copolymers absorb at wavelengths corresponding to each of the homopolymers with different 
maxima depending on the final composition. Given that these copolymers have large blocks of 
each monomer at the termini, it was surprising that all of their emission spectra show a 
maximum around 430 nm, which coincides with the emission from polyfluorene homopolymer; 
this result suggests that there is highly efficient intrachain energy transfer in solution. Thin film 
spectroscopic studies revealed similar trends. Further characterization studies were not pursued 
due to the limited 
microstructures 
available from these 
monomers and 
Ni(dppe)Cl2. 

In summary, these 
studies have led us to 
conclude: (1) π-
Conjugated gradient 
copolymers can be 
synthesized using Ni-
catalyzed chain-growth 
methods; however, with 
existing catalysts, the 
reaction conditions 
must be optimized for 
each pair of monomers. 
(2) Steric effects 
between the catalyst and monomer may play a significant role in reactivity ratios. (3) These 
gradient copolymers exhibit efficient energy transfer in solution and thin films. More gradient 
copolymers need to be synthesized to elucidate the role of comonomer identity, copolymer 
sequence, composition, and molecular weight on the copolymer properties.  

 

 
 
Figure 1. Absorption (solid lines) and emission (dashed lines) spectra for 
(A) batch copolymers  at varying 1:2 ratios and (B) homopolymers in 
solution. 
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